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Abstract

A new model has been developed for simulating steady-state, turbulent, gaseous combustion in practical,
three-dimensional devices.  Although the model was specifically developed for lean, premixed
combustion of natural gas in gas turbines, it has general applicability to a variety of gaseous combustion
problems and configurations.  The model uses a hybrid Eulerian/Lagrangian approach with the Monte
Carlo velocity-scalar pdf method coupled to an unstructured-grid flow solver.  It was developed from the
foundation of PCGC-3, a three-dimensional gas and particle combustion code (Hill and Smoot, 1993), and
PDF2DS, a two-dimensional velocity-scalar pdf code (Correa and Pope, 1992).  The flow solver calculates
the flowfield for an assumed density field and the Monte Carlo pdf solver solves the transport equation for
the joint pdf of velocity and scalars.

The unstructured-grid flow solver uses primitive variables (u, v, w, p).  It solves the incompressible, Navier-
Stokes equations using a co-located, equal-order, control volume-based, finite-element method (Prakash
and Patankar, 1985).  The mass-weighted, skewed, upwind scheme of Schneider and Raw (1986) is used
for the advection terms, while linear interpolation functions are used for the diffusion, pressure gradient
and source terms.  Rotational periodic boundary conditions are included.  The discretized algebraic
equations are solved using an iterative, tri-diagonal matrix algorithm.  Turbulence is modeled using the k-ε
model.  Convective and radiative heat losses are modeled using a wall function method and a discrete
ordinates radiation model (Jamaluddin and Smith, 1988), respectively.  Turbulence/chemistry interactions
are modeled using the velocity-composition, Monte-Carlo pdf approach (Pope, 1985).  The pdf calculation
includes a new chemical mechanism that was developed specifically for the conditions of lean premixed
combustion of natural gas in land-based turbines (Mallampalli, et al., 1996).

In support of the modeling effort, an experimental program has been conducted to collect in situ data in a
swirling, turbulent, premixed natural gas flame in an atmospheric pressure, laboratory-scale gas turbine
combustor (LSGTC).  These measurements have included multiple, instantaneous, CARS measurements
of gas temperature and major species concentrations (CO, CO2, O2, and N2); multiple instantaneous LDA
measurements of axial, tangential, and radial velocity; and multiple instantaneous PLIF images of selected
combustion intermediates (OH, and CH).  Results are in the form of mean and standard deviation iso-
contour maps of gas temperature, selected species concentration, and mean and instantaneous PLIF
images of OH and CH.  These data are being collected at medium and high swirl numbers (SN = 0.74 and
1.29) and at fuel equivalence ratios of 0.65 and 0.80.  The poster paper presents example results for the
fuel-lean case (φ = 0.65) at the high swirl number (SN = 1.29).

The velocity-composition pdf model, coupled with a mean flow CFD model, was used to describe the
turbulent fluid flow, heat transfer, chemistry, and their interactions in the swirling, lean premixed, methane-



air combustor described above.  A premixed natural gas flame was stabilized in the axi-symmetric,
laboratory-scale, gas-turbine combustor (LSGTC).  A reduced, 5-step chemical mechanism, for describing
fuel oxidation and NO chemistry, was used in this LSGTC model.  NO emissions from thermal, N2O-
intermediate, and prompt pathways were described in this 5-step mechanism.  The chemistry calculations
were performed efficiently with an in-situ  look-up table.  An axi-symmetric, unstructured grid, consisting of
2283 vertices and 4302 triangular elements, was used for solving the Eulerian, mean flow equations and
the vertices were used to store mean statistics for solving the Lagrangian, fluid particle (≈ 310,000 fluid
particles) equations.  Predicted velocity and composition statistics were compared to measurements in the
LSGTC for lean equivalence ratios of 0.8 and 0.65.  The comparisons of predicted mean velocity and
temperature were reasonably good throughout the combustor.  The location and magnitude of peak axial
velocity was well represented by the model at near inlet regions, though the negative mean axial velocity
in the internal recirculation zone was over-predicted.  The predicted maximum mean temperature and the
penetration zone of the cold, unburned fluid were in reasonable agreement with the experimental data.
Correct trends in CO and NO with equivalence ratio were predicted with the model.  The in situ  tabulation
method was used to represent the chemical kinetics in this axi-symmetric combustor without requiring
significant CPU time and memory.

The model has also been evaluated with premixed combustion data from laboratory flames stabilized by
swirl, bluff-body, and a pilot flame (Cannon et al., 1997), and it has been applied to several practical,
industrial, gas turbine premixers and combustors (Meng et al., 1997).
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Objectives

• Develop an improved model for advanced gas 
turbine systems
– 3-dimensional
– Curved boundaries
– Submodel development for lean premixed systems

• Obtain data for model evaluation
• Evaluate the model
• Apply the model to practical systems
• Provide training and distribute the code



Critical Elements of the New Model

New Model

New 
Combustion 
Chemistry

Ultra-low 
NOx 

Chemistry

Chemistry/turbulence 
interactions calculated by 
Monte Carlo PDF method

Flow field calculated by 
Control Volume Finite 

Element Method (CVFEM)

Radiation by Discrete 
Ordinates method with 
Weighted Sum of Gray 
Gases approximation



3.0

2.5

2.0

1.5

1.0

0.5

0.0

M
ol

e%
 C

O

1.00.80.60.4

Equivalence Ratio(φ)

1 atm
 Full (GRI 2.11)
 9-step
 7-step
 6-step
 5-step
 4-step (Seshadri-Peters)

1.0

0.8

0.6

0.4

0.2

0.0
M

ol
e%

 C
O

1.11.00.90.80.70.60.5

Equivalence Ratio(φ)

30 atm
 Full (GRI 2.11)
 9-step
 7-step
 6-step
 5-step
 4-step (Seshadri-Peters)

PSR Predictions of CO
at 1 and 30 atm

Tinlet = 600 K, and τ = 2 ms

(a)  1 atm (b)  30 atm



PSR Predictions of NO
at 1 and 30 atm

Tinlet = 600 K, and τ = 2 ms
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5-Step Chemistry
Mallampalli et al., 1996

I
II
III
IV
V

3H2 + O2 + CO = 3H2O + CO
H2 + 2OH = 2H2O
3H2 + CO = H2O + CH4

H2 + CO2 = H2O + CO
3H2 + CO + 2NO = 3H2O + CO + N2
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Vanderbilt Combustor
Bluff-body stabilized (Nandula et al., 1996)
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Piloted Bunsen Burner
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Westinghouse Combustor
(Sharifi et al., 1995)
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BYU Experimental Capability
• Laboratory-scale, atmospheric pressure, model gas-turbine
 combustor (LSGTC) with good optical access

• Premixed and non-premixed fuel injectors

• Gaseous (nat'l gas and propane) and liquid (ethanol) fuels

• Optical instruments => instantaneous and non-intrusive

 - Film and video cameras => overall flame structure

 - CARS =>  T, CO, CO2, O2 and N2 directly

     H2O, and H* and C* by elemental balance

 - LDA =>  Axial, tangential or axial, radial velocities

 -  PLIF =>  OH, CH, NO two-dimensional images
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NO PLIF Image in a Laminar, Premixed Ethylene/Air Flame
(ca 225.6 nm Pump Laser; ca 234-237 nm Fluorescence)



Conclusions/Results
• New model for lean premixed systems
• New reduced mechanisms for lean premixed combustion
• Temperature, species, and PLIF image data obtained in 

laboratory-scale gas turbine combustor
• Reasonable comparisons with data from laboratory 

combustors
• First ever predictions of NO in premixed methane flame 

with PDF method
• First practical 3-D combustion calculations with velocity-

scalar PDF method
• Code user’s manual written
• Code available for beta testing
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